

Established by the European Commission

Slide of the Seminar

The spatiotemporal spectrum of turbulent <u>flows</u>

Prof. Patricio Clark di Leoni

ERC Advanced Grant (N. 339032) "NewTURB" (P.I. Prof. Luca Biferale)

Università degli Studi di Roma Tor Vergata C.F. n. 80213750583 – Partita IVA n. 02133971008 - Via della Ricerca Scientifica, I – 00133 ROMA

The spatiotemporal spectrum of turbulent flows

P. Clark di Leoni and P. D. Mininni

Group of Astrophysical Flows Physics Department University of Buenos Aires

Roma, Italia October 8th, 2015

Turbulence under the effect of waves

Start with energy equation in Fourier space

$$\frac{1}{2}\frac{\partial u_k^2}{\partial t} = -i\sum_{k=p+q} u_k^* \cdot (u_q \cdot q)u_p$$

Turbulence under the effect of waves

Start with energy equation in Fourier space

$$\frac{1}{2}\frac{\partial u_k^2}{\partial t} = -i\sum_{k=p+q} u_k^* \cdot (u_q \cdot q)u_p$$

Assume $u_k = U(\tau)e^{-i\omega_k t}$

$$\frac{1}{2}\frac{\partial U_k^2}{\partial t} = -i\sum_{k=p+q} U_k^* \cdot (U_q \cdot q) U_p e^{i(\omega_k - \omega_q - \omega_p)t}$$

Turbulence under the effect of waves

Start with energy equation in Fourier space

$$\frac{1}{2}\frac{\partial u_k^2}{\partial t} = -i\sum_{k=p+q} u_k^* \cdot (u_q \cdot q)u_p$$

Assume $u_k = U(\tau)e^{-i\omega_k t}$

$$\frac{1}{2}\frac{\partial U_k^2}{\partial t} = -i\sum_{k=p+q} U_k^* \cdot (U_q \cdot q) U_p e^{i(\omega_k - \omega_q - \omega_p)t}$$

 $\Rightarrow \omega_k = \omega_p + \omega_q$ to have interaction!

Waves are known to...

► Alter diffusion processes in the ocean Woods, Nature (1980)

- ► Alter diffusion processes in the ocean *Woods*, *Nature (1980)*
- ► Make the flow anisotropic Cambon and Jacquin, JFM (1989)

- ► Alter diffusion processes in the ocean Woods, Nature (1980)
- ► Make the flow anisotropic *Cambon and Jacquin, JFM (1989)*
- Change the very nature of nonlinear interaction Nazarenko (2011)

What's the role of waves in turbulent flows? How do they coexist with eddies?

- What's the role of waves in turbulent flows? How do they coexist with eddies?
- Characterization of the effect of waves, and measurements of the amount of energy in wave modes has been done mostly indirectly.

- What's the role of waves in turbulent flows? How do they coexist with eddies?
- Characterization of the effect of waves, and measurements of the amount of energy in wave modes has been done mostly indirectly.
- Space and time resolved spectra (e.g. Yarom and Sharom, Nature Physics (2014) and Cobelli et al, PRL (2009)) can study the effect of waves directly

- What's the role of waves in turbulent flows? How do they coexist with eddies?
- Characterization of the effect of waves, and measurements of the amount of energy in wave modes has been done mostly indirectly.
- Space and time resolved spectra (e.g. Yarom and Sharom, Nature Physics (2014) and Cobelli et al, PRL (2009)) can study the effect of waves directly
- Results for rotating, stratified and quantum turbulence.

- GHOST: Parallel pseudospectral code with periodic boundary conditions (Gomez et al 2005, Mininni et al 2011)
- Spatial resolution: 512x512x512

- GHOST: Parallel pseudospectral code with periodic boundary conditions (Gomez et al 2005, Mininni et al 2011)
- Spatial resolution: 512x512x512
- Rot and Strat cases: Fluid was started from rest and energy was injected via forcing terms.
- Simulations were run for 12 turnover times after reaching steady turbulent state

- GHOST: Parallel pseudospectral code with periodic boundary conditions (Gomez et al 2005, Mininni et al 2011)
- Spatial resolution: 512x512x512
- Rot and Strat cases: Fluid was started from rest and energy was injected via forcing terms.
- Simulations were run for 12 turnover times after reaching steady turbulent state
- Quantum case: No forcing, basically decay run but with a long enough almost steady state.

- GHOST: Parallel pseudospectral code with periodic boundary conditions (Gomez et al 2005, Mininni et al 2011)
- Spatial resolution: 512x512x512
- Rot and Strat cases: Fluid was started from rest and energy was injected via forcing terms.
- Simulations were run for 12 turnover times after reaching steady turbulent state
- Quantum case: No forcing, basically decay run but with a long enough almost steady state.
- High output cadence: over 40 outputs per wave period!

- GHOST: Parallel pseudospectral code with periodic boundary conditions (Gomez et al 2005, Mininni et al 2011)
- Spatial resolution: 512x512x512
- Rot and Strat cases: Fluid was started from rest and energy was injected via forcing terms.
- Simulations were run for 12 turnover times after reaching steady turbulent state
- Quantum case: No forcing, basically decay run but with a long enough almost steady state.
- High output cadence: over 40 outputs per wave period!

Rotating turbulence Navier Stokes in a rotating frame

Rotation axis is along \hat{z} (parallel direction)

Rotating turbulence Navier Stokes in a rotating frame

$$\frac{\partial \mathbf{u}}{\partial t} = (\nabla \times \mathbf{u}) \times \mathbf{u} - \underbrace{\overbrace{2\Omega \times \mathbf{u}}^{\text{Coriolis}} - \underbrace{\nabla p}_{\text{total pressure}} + \nu \nabla^2 \mathbf{u} + \overbrace{\mathbf{F}}^{\text{forcing}}$$

Rotation axis is along \hat{z} (parallel direction)

Inertial waves: $\omega_R = \frac{2\Omega k_{\parallel}}{k}$

Rotating turbulence Navier Stokes in a rotating frame

Rotation axis is along \hat{z} (parallel direction)

Inertial waves: $\omega_R = \frac{2\Omega k_{\parallel}}{k} \Rightarrow$ Preferential energy transfer towards modes with small k_{\parallel} (Waleffe, PoF 93)

Rotating turbulence $e(k_{\perp}, k_{\parallel})$

Waleffe's prediction holds! But exactly where are the waves? *Clark di Leoni et al, PoF (2014)*

Rotating turbulence

 $E(k,\omega)$

Only in the larger scales energy accumulates along modes satisfying the dispersion relation of inertial waves!

Rotating turbulence

 $E(k,\omega)$

"Loss" of waves is not due to isotropization, but because sweeping mechanisms become faster at those scales

Stratified turbulence Boussinesq model with no rotation

$$\frac{\partial \mathbf{u}}{\partial t} = -(\mathbf{u} \cdot \nabla)\mathbf{u} - \overbrace{N\theta \hat{z}}^{\text{buoyancy}} -\nabla p + \nu \nabla^2 \mathbf{u} + \overbrace{\mathbf{F}}^{\text{forcing}}$$
$$\frac{\partial \theta}{\partial t} = \mathbf{u} \cdot \nabla \theta - Nu_z - \kappa \nabla^2 \theta$$

Stratification gradient is along \hat{z} (parallel direction)

Stratified turbulence Boussinesq model with no rotation

$$\frac{\partial \mathbf{u}}{\partial t} = -(\mathbf{u} \cdot \nabla)\mathbf{u} - \overbrace{N\theta \hat{z}}^{\text{buoyancy}} - \nabla p + \nu \nabla^2 \mathbf{u} + \overbrace{\mathbf{F}}^{\text{forcing}}$$
$$\frac{\partial \theta}{\partial t} = \mathbf{u} \cdot \nabla \theta - Nu_z - \kappa \nabla^2 \theta$$

Stratification gradient is along \hat{z} (parallel direction)

Internal waves: $\omega_S = \frac{Nk_{\perp}}{k}$

Stratified turbulence Boussinesq model with no rotation

$$\frac{\partial \mathbf{u}}{\partial t} = -(\mathbf{u} \cdot \nabla)\mathbf{u} - \overbrace{N\theta\hat{z}}^{\text{buoyancy}} - \nabla p + \nu\nabla^2\mathbf{u} + \overbrace{\mathbf{F}}^{\text{forcing}}$$
$$\frac{\partial \theta}{\partial t} = \mathbf{u} \cdot \nabla \theta - Nu_z - \kappa \nabla^2 \theta$$

Stratification gradient is along \hat{z} (parallel direction)

Internal waves: $\omega_S = \frac{Nk_{\perp}}{k} \Rightarrow$ Preferential energy transfer towards modes with small k_{\perp} Waves now travel in the same direction as the mean flow

 Develop vertically sheared horizontal winds Smith & Waleffe, JFM (2003)

- Develop vertically sheared horizontal winds Smith & Waleffe, JFM (2003)
- ► These causes Doppler shifting of internal waves *Hines*, *JAS* (1991)

- Develop vertically sheared horizontal winds Smith & Waleffe, JFM (2003)
- ► These causes Doppler shifting of internal waves *Hines*, *JAS* (1991)
- When the phase velocity of a wave matches that of the horizontal wind Critical Layer absorption occurs *Hines*, JAS (1991) Winters & D'Asaro, JFM (1994)

- Develop vertically sheared horizontal winds Smith & Waleffe, JFM (2003)
- ► These causes Doppler shifting of internal waves *Hines*, *JAS* (1991)
- When the phase velocity of a wave matches that of the horizontal wind Critical Layer absorption occurs *Hines*, JAS (1991) Winters & D'Asaro, JFM (1994)
- This has been observed in the atmosphere Gossard et al, JGR (1970) Kunze et al, JGR (1990)

- Develop vertically sheared horizontal winds Smith & Waleffe, JFM (2003)
- ► These causes Doppler shifting of internal waves *Hines*, *JAS* (1991)
- When the phase velocity of a wave matches that of the horizontal wind Critical Layer absorption occurs *Hines*, JAS (1991) Winters & D'Asaro, JFM (1994)
- This has been observed in the atmosphere Gossard et al, JGR (1970) Kunze et al, JGR (1990)
- Theories of stratified turbulence don't take this effects into account!

Stratified turbulence $E(k, \omega)$

Stratified turbulence $E(k, \omega)$

Doppler shifting and Critical Layer absorption appear! This indicates a nonlocal transfer of energy from the small to the large scales. *Clark di Leoni and Mininni, PRE (2015)*

Superfluid turbulence Gross-Pitaevskii equation

Nonlinear PDE describing a Bose Einstein condensate for wavefunction

$$i\hbar\frac{\partial\psi}{\partial t} = -\frac{\hbar^2}{2m}\nabla^2\psi + g|\psi|^2\psi$$

Superfluid turbulence Gross-Pitaevskii equation

Nonlinear PDE describing a Bose Einstein condensate for wavefunction

$$i\hbar\frac{\partial\psi}{\partial t} = -\frac{\hbar^2}{2m}\nabla^2\psi + g|\psi|^2\psi$$

Madelung transformation gives a the Euler equation plus extra term

$$\psi(\mathbf{r},t) = \sqrt{\frac{\rho(\mathbf{r},t)}{m}} e^{i\frac{m}{\hbar}\phi(\mathbf{r},t)}$$

Superfluid turbulence Gross-Pitaevskii equation

Nonlinear PDE describing a Bose Einstein condensate for wavefunction

$$i\hbar\frac{\partial\psi}{\partial t} = -\frac{\hbar^2}{2m}\nabla^2\psi + g|\psi|^2\psi$$

Madelung transformation gives a the Euler equation plus extra term

$$\psi(\mathbf{r},t) = \sqrt{\frac{\rho(\mathbf{r},t)}{m}} e^{i\frac{m}{\hbar}\phi(\mathbf{r},t)}$$

Vorticity is quantized and concentrated along lines with $\rho = 0$

Superfluid turbulence (Gross-Pitaevskii equation) $\rho({\bf r})$

Kelvin waves

Vortex linex have tension and Kelvin waves can travel through them. Below the inervortex scale we can have Kelvin wave turbulence. Sound waves are also present

Superfluid turbulence (Gross-Pitaevskii equation) $\rho(k,\omega)$

Sound and kelvin waves!

Thanks!

Rotating turbulence Time correlation functions

We studied the time correlation functions for different modes

$$\Gamma_{ij}(\mathbf{k},\tau) = \frac{\langle \hat{u}_i^*(\mathbf{k},t) \hat{u}_j(\mathbf{k},t+\tau) \rangle_t}{\langle |\hat{u}_i^*(\mathbf{k},t) \hat{u}_j(\mathbf{k},t)| \rangle_t}$$

All modes with just parallel components.

Rotating flow Behaviour of the decorrelation time

 τ_{sw} : sweeping time; τ_{NL} : nonlinear time; τ_{ω} : wave period

$$\tau_t = \left(\tau_{sw}^{-2} + \tau_{\omega}^{-2}\right)^{-1/2}$$

Rotating flow Behaviour of the decorrelation time

 τ_{sw} : sweeping time; τ_{NL} : nonlinear time; τ_{ω} : wave period

$$\tau_t = \left(\tau_{sw}^{-2} + \tau_{\omega}^{-2}\right)^{-1/2}$$

Interaction is carried out by the fasted mechanism! For the isotropic case decorrelation is governed by sweeping effects as predicted by Chen & Kraichnan 1989.

Rotating flow Behaviour of the decorrelation time

 τ_{sw} : sweeping time; τ_{NL} : nonlinear time; τ_{ω} : wave period

$$\tau_t = \left(\tau_{sw}^{-2} + \tau_{\omega}^{-2}\right)^{-1/2}$$

The point where $\tau_{sw} = \tau_{\omega}$ does not correspond to the isotropization (Zeman) scales!