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Turbulence under the e�ect of waves

Start with energy equation in Fourier space

1
2

ˆu2
k

ˆt = ≠i
ÿ

k=p+q
uú

k · (uq · q)up

Assume uk = U (·)e≠iÊkt

1
2

ˆU 2
k

ˆt = ≠i
ÿ

k=p+q
U ú

k · (Uq · q)Upei(Êk≠Êq≠Êp)t

∆ Êk = Êp + Êq to have interaction!
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Waves are known to...

I Alter di�usion processes in the ocean Woods, Nature (1980)

I Make the flow anisotropic Cambon and Jacquin, JFM (1989)

I Change the very nature of nonlinear interaction Nazarenko (2011)
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What, how, and why?

I What’s the role of waves in turbulent flows? How do they coexist
with eddies?

I Characterization of the e�ect of waves, and measurements of the
amount of energy in wave modes has been done mostly indirectly.

I Space and time resolved spectra (e.g. Yarom and Sharom, Nature
Physics (2014) and Cobelli et al, PRL (2009)) can study the e�ect
of waves directly

I Results for rotating, stratified and quantum turbulence.
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Simulations

I GHOST: Parallel pseudospectral code with periodic boundary
conditions (Gomez et al 2005, Mininni et al 2011)

I Spatial resolution: 512x512x512

I Rot and Strat cases: Fluid was started from rest and energy was
injected via forcing terms.

I Simulations were run for 12 turnover times after reaching steady
turbulent state

I Quantum case: No forcing, basically decay run but with a long
enough almost steady state.

I High output cadence: over 40 outputs per wave period!
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Rotating turbulence

Navier Stokes in a rotating frame

ˆu
ˆt = (Ò ◊ u) ◊ u ≠

Coriolis˙ ˝¸ ˚
2� ◊ u ≠ Òp¸˚˙˝

total pressure

+‹Ò2u +
forcing˙˝¸˚

F

Rotation axis is along ẑ (parallel direction)

Inertial waves: ÊR = 2�kÎ
k ∆ Preferential energy transfer towards modes

with small kÎ (Wale�e, PoF 93)
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Rotating turbulence

e(k‹, kÎ)

Wale�e’s prediction holds! But exactly where are the waves?
Clark di Leoni et al, PoF (2014)
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Rotating turbulence

E(k, Ê)
Only in the larger scales energy accumulates along modes satisfying the
dispersion relation of inertial waves!
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Rotating turbulence

E(k, Ê)
“Loss” of waves is not due to isotropization, but because sweeping
mechanisms become faster at those scales
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Stratified turbulence

Boussinesq model with no rotation

ˆu
ˆt = ≠(u · Ò)u ≠

buoyancy˙˝¸˚
N◊ẑ ≠Òp + ‹Ò2u +

forcing˙˝¸˚
F

ˆ◊

ˆt = u · Ò◊ ≠ Nuz ≠ ŸÒ2◊

Stratification gradient is along ẑ (parallel direction)

Internal waves: ÊS = Nk‹
k ∆ Preferential energy transfer towards modes

with small k‹ Waves now travel in the same direction as the mean flow
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Stratified flows

Previous works

I Develop vertically sheared horizontal winds Smith & Wale�e, JFM
(2003)

I These causes Doppler shifting of internal waves Hines, JAS (1991)

I When the phase velocity of a wave matches that of the horizontal
wind Critical Layer absorption occurs Hines, JAS (1991) Winters &
D’Asaro, JFM (1994)

I This has been observed in the atmosphere Gossard et al, JGR
(1970) Kunze et al, JGR (1990)

I Theories of stratified turbulence don’t take this e�ects into account!
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Stratified turbulence

E(k, Ê)
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Doppler shifting and Critical Layer absorption appear! This indicates a
nonlocal transfer of energy from the small to the large scales.
Clark di Leoni and Mininni, PRE (2015)

31 / 43



Stratified turbulence

E(k, Ê)

0 10 20 30 40 50
ky (horizontal wavenumber)

0

10

20

30

40

!

!S + Uyky

!S

!S � Uyky CL 10�2

10�1

100

0 80ky
0

1

F

Doppler shifting and Critical Layer absorption appear! This indicates a
nonlocal transfer of energy from the small to the large scales.
Clark di Leoni and Mininni, PRE (2015)

32 / 43



Superfluid turbulence

Gross-Pitaevskii equation

Nonlinear PDE describing a Bose Einstein condensate for wavefunction

i~ˆÂ

ˆt = ≠ ~2

2m Ò2Â + g|Â|2Â

Madelung transformation gives a the Euler equation plus extra term

Â(r, t) =
Û

fl(r, t)
m ei m

~ „(r,t)

Vorticity is quantized and concentrated along lines with fl = 0

33 / 43



Superfluid turbulence

Gross-Pitaevskii equation

Nonlinear PDE describing a Bose Einstein condensate for wavefunction

i~ˆÂ

ˆt = ≠ ~2

2m Ò2Â + g|Â|2Â

Madelung transformation gives a the Euler equation plus extra term

Â(r, t) =
Û

fl(r, t)
m ei m

~ „(r,t)

Vorticity is quantized and concentrated along lines with fl = 0

34 / 43



Superfluid turbulence

Gross-Pitaevskii equation

Nonlinear PDE describing a Bose Einstein condensate for wavefunction

i~ˆÂ

ˆt = ≠ ~2

2m Ò2Â + g|Â|2Â

Madelung transformation gives a the Euler equation plus extra term

Â(r, t) =
Û

fl(r, t)
m ei m

~ „(r,t)

Vorticity is quantized and concentrated along lines with fl = 0

35 / 43



Superfluid turbulence (Gross-Pitaevskii equation)

fl(r)
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Kelvin waves

Vortex linex have tension and Kelvin waves can travel through them.
Below the inervortex scale we can have Kelvin wave turbulence.
Sound waves are also present 37 / 43



Superfluid turbulence (Gross-Pitaevskii equation)

fl(k, Ê)
Sound and kelvin waves!
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Thanks!
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Rotating turbulence

Time correlation functions

We studied the time correlation functions for di�erent modes

�ij(k, ·) = Èûú
i (k, t)ûj(k, t + ·)Ít

È|ûú
i (k, t)ûj(k, t)|Ít

All modes with just parallel components.
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Rotating flow

Behaviour of the decorrelation time

·sw : sweeping time; ·NL: nonlinear time; ·Ê: wave period

·t =
1
·≠2

sw + ·≠2
Ê

2≠1/2

Interaction is carried out by the fasted mechanism!
For the isotropic case decorrelation is governed by sweeping e�ects as

predicted by Chen & Kraichnan 1989.
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Rotating flow

Behaviour of the decorrelation time

·sw : sweeping time; ·NL: nonlinear time; ·Ê: wave period

·t =
1
·≠2

sw + ·≠2
Ê

2≠1/2

The point where ·sw = ·Ê does not correspond to the isotropization
(Zeman) scales!
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